Boosting as a Metaphor For Algorithm Design

Kevin Leyton-Brown FEugene Nudelman James McFadden Galen Andrew Yoav Shoham
Department of Computer Science, Stanford University, USA

The Combinatorial Auction BOOStil’lg Extensions
Winner Determination Problem

= Find revenue-maximizing non-conflicting Train new classifiers on instances that are hard for the aggregate

allocation of submitted bids
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1. Trade off time taken to compute features and
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= Complete heuristic search algorithms we used:
» CPLEX [ILOG Inc.
m CASS [Leyton-Brown et.al|
m GL [Gonen and Lehman
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= We generated instances from:

= Weighted Random (L2), Uniform (L3), GL CASS CPLEX CPLEX Optimal Portfolio L
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= CATS: Regions, Arbitrary, Matching, S i
Scheduling [Leyton-Brown et al.| [re—
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= Randomly sampled generator’s parameters for . -
each instance 3. Cap runtimes to significantly reduce the

= Took more than 3 years of CPU time just to amount of time required for collecting data

collect CPLEX runtimes

Discussion: Other Approaches
Algorithm selection has received some
previous study; e.g., [Rice|, [Lobjois & Lemaitre]
2. Distribution Induction Classification [Forvitz et al]
= To evaluate new algorithms, use portfolio hardness model as a PDF and generate = error measure often inappropriate
problems in proportion to the time our portfolio spends on them = class boundary effects
= D: original distribution of instances; H: model of portfolio runtime (h; normalized) Run n algorithms in parallel [Gomes & Selman|

= Generate instances from D x h, using rejection sampling = running time always n - min-time

80% ® in our case study, we did much better
(1.05 - min-time)

O Original Sequential algorithm selection using

B Harder MDP formalism [Lagoudakis & Littman)]
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Running ~ > %, Distribution 0 = algorithms must be reimplemented

Time s, % 500 instances 40% = computing a good value function at every
logu(sec) & — 30% recursive branch can be very expensive
’ (our value function averaged 27 secs)

Empirical Hardness Models 207
= In past work, we found that quadratic 10% ﬂ n T Future Directions

regression can yield very accurate models 0% : : ’_. : Apply these ideas to other A’P-hard problems

= predicting log;, of CPLEX runtime 0.1 10 100 1000 10000 100000 DYy Lhese 1deas Lo other VFTAALE Probiems
Runtime (s) such as SAT

Scheduling = our preliminary SAT portfolio (“SATzilla")

3 40% showed very encouraging results at the
80% fg:ﬁml 30% SAT-2003 competition (2! on random
60% Blfard data; 3'4 on “handmade” data)

= root mean squared error: 0.216 (test data) Matching

40% - c
least squares regression
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20% 1 Study the use of SVM regression rather than
J la.s

10%
20% 1 J I I = our initial results show that SVMs
0% e I,{’ =, 0% A B oa =, outperform least-squares models, albeit by
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