
Extensions
1. Trade off time taken to compute features and 

time taken to run the selected algorithm

2. Transform response variable to achieve 
tradeoffs between absolute and relative 
prediction error

3. Cap runtimes to significantly reduce the 
amount of time required for collecting data

Discussion: Other Approaches
Algorithm selection has received some 
previous study; e.g., [Rice], [Lobjois & Lemaitre]

Classification  [Horvitz et al.]

error measure often inappropriate

class boundary effects

Run n algorithms in parallel [Gomes & Selman]

running time always n · min-time

in our case study, we did much better 
(1.05 · min-time)

Sequential algorithm selection using 
MDP formalism [Lagoudakis & Littman]

algorithms must be reimplemented

computing a good value function at every 
recursive branch can be very expensive 
(our value function averaged 27 secs)

Future Directions
Apply these ideas to other NP-hard problems 
such as SAT

our preliminary SAT portfolio (“SATzilla”) 
showed very encouraging results at the 
SAT-2003 competition (2nd on random 
data; 3rd on “handmade” data)

Study the use of SVM regression rather than 
least squares regression

our initial results show that SVMs
outperform least-squares models, albeit by 
a fairly small “margin”

Boosting
1. Combine uncorrelated weak classifiers into a stronger aggregate

2. Train new classifiers on instances that are hard for the aggregate

1. Algorithm Portfolios
Hardness models can be used to select an algorithm to run on a per-instance basis

2. Distribution Induction
To evaluate new algorithms, use portfolio hardness model as a PDF and generate 
problems in proportion to the time our portfolio spends on them

D: original distribution of instances; Hf: model of portfolio runtime (hf normalized)

Generate instances from D × hf using rejection sampling

The Combinatorial Auction

Winner Determination Problem
Find revenue-maximizing non-conflicting 
allocation of submitted bids

Complete heuristic search algorithms we used:

CPLEX [ILOG Inc.]

CASS [Leyton-Brown et.al]

GL [Gonen and Lehman]

Data
We generated instances from:

Weighted Random (L2), Uniform (L3), 
Decay (L4) [Sandholm]

Exponential (L6), Binomial (L7) [Fujishima] 

CATS: Regions, Arbitrary, Matching, 
Scheduling [Leyton-Brown et al.]

Randomly sampled generator’s parameters for 
each instance

Took more than 3 years of CPU time just to 
collect CPLEX runtimes

Empirical Hardness Models
In past work, we found that quadratic 
regression can yield very accurate models 

predicting log10 of CPLEX runtime 

root mean squared error: 0.216 (test data) 
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