
Extensions
1. Trade off time taken to compute features and

time taken to run the selected algorithm

2. Transform response variable to achieve
tradeoffs between absolute and relative
prediction error

3. Cap runtimes to significantly reduce the
amount of time required for collecting data

Discussion: Other Approaches
Algorithm selection has received some
previous study; e.g., [Rice], [Lobjois & Lemaitre]

Classification [Horvitz et al.]

error measure often inappropriate

class boundary effects

Run n algorithms in parallel [Gomes & Selman]

running time always n · min-time

in our case study, we did much better
(1.05 · min-time)

Sequential algorithm selection using
MDP formalism [Lagoudakis & Littman]

algorithms must be reimplemented

computing a good value function at every
recursive branch can be very expensive
(our value function averaged 27 secs)

Future Directions
Apply these ideas to other NP-hard problems
such as SAT

our preliminary SAT portfolio (“SATzilla”)
showed very encouraging results at the
SAT-2003 competition (2nd on random
data; 3rd on “handmade” data)

Study the use of SVM regression rather than
least squares regression

our initial results show that SVMs
outperform least-squares models, albeit by
a fairly small “margin”

Boosting
1. Combine uncorrelated weak classifiers into a stronger aggregate

2. Train new classifiers on instances that are hard for the aggregate

1. Algorithm Portfolios
Hardness models can be used to select an algorithm to run on a per-instance basis

2. Distribution Induction
To evaluate new algorithms, use portfolio hardness model as a PDF and generate
problems in proportion to the time our portfolio spends on them

D: original distribution of instances; Hf: model of portfolio runtime (hf normalized)

Generate instances from D × hf using rejection sampling

The Combinatorial Auction

Winner Determination Problem
Find revenue-maximizing non-conflicting
allocation of submitted bids

Complete heuristic search algorithms we used:

CPLEX [ILOG Inc.]

CASS [Leyton-Brown et.al]

GL [Gonen and Lehman]

Data
We generated instances from:

Weighted Random (L2), Uniform (L3),
Decay (L4) [Sandholm]

Exponential (L6), Binomial (L7) [Fujishima]

CATS: Regions, Arbitrary, Matching,
Scheduling [Leyton-Brown et al.]

Randomly sampled generator’s parameters for
each instance

Took more than 3 years of CPU time just to
collect CPLEX runtimes

Empirical Hardness Models
In past work, we found that quadratic
regression can yield very accurate models

predicting log10 of CPLEX runtime

root mean squared error: 0.216 (test data)

Boosting as a Metaphor For Algorithm Design
Kevin Leyton-Brown Eugene Nudelman James McFadden Galen Andrew Yoav Shoham

Department of Computer Science, Stanford University, USA

-1 0
1

2
3

4
5 M

atching

Paths

Scheduling

L6
L2

Regions

L4
Arbitrary

L7
L3

0%

20%

40%

60%

80%

100%

Running

Time

log10(sec)

Distribution

500 instances

in each

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5

log(Actual Runtime)

P
re

d
ic

te
d
 l

o
g
(R

u
n

ti
m

e)

Optimal Algorithm Selection Portfolio Algorithm Selection

Matching

0%

20%

40%

60%

80%

100%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10
Runtime (s)

Original

Hard

Scheduling

0%

10%

20%

30%

40%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5 31
Runtime (s)

Original

Hard

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.1 1 10 100 1000 10000 100000

Runtime (s)

Original

Harder

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5

log(Actual Runtim e)

P
re

d
ic

te
d

 l
o

g
(R

u
n

ti
m

e) Response = Actual Runtime

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5

log (Actua l Runtime)

P
re

d
ic

te
d
 l

o
g
(R

u
n
ti

m
e
) Response = (Actual Runtime)ˆ(1/3)

We would like to acknowledge Ryan Porter, Carla Gomes and Bart Selman for their assistance . This work was supported by DARPA grant F30602-00-2-0598 and a Stanford Graduate Fellowship.

0 50 100 150 200 250 300

Regular

Smart

Time (s)

0

100

200

300

700

800

CPLEX Optimal Portfolio

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

400

500

600

	Boosting as a Metaphor For Algorithm DesignKevin Leyton-Brown Eugene Nudelman James McFadden Galen Andrew Yoav Shoham

