Boosting as a Metaphor For Algorithm Design

Kevin Leyton-Brown FEugene Nudelman James McFadden Galen Andrew Yoav Shoham
Department of Computer Science, Stanford University, USA

The Combinatorial Auction BOOStil’lg Extensions
Winner Determination Problem

= Find revenue-maximizing non-conflicting Train new classifiers on instances that are hard for the aggregate

allocation of submitted bids
gy . . Smart
o 1. Algorithm Portfolios
maximize: Y. zp;
i— Hardness models can be used to select an algorithm to run on a per-instance basis Regular
subject to: > z; <1

q 6000 800 0 s 10 150 20 %0 30
i|lg€S; Time (s)

z; € {0,1} 1 5000 700 2. Transform response variable to achle.ve
tradeoffs between absolute and relative
4000 prediction error

1. Trade off time taken to compute features and

Combine uncorrelated weak classifiers into a stronger aggregate e e () e e ellzsie] ok

= Complete heuristic search algorithms we used:
» CPLEX [ILOG Inc.
m CASS [Leyton-Brown et.al|
m GL [Gonen and Lehman

Predietd log(Ruseime)

Data ’ S

= We generated instances from:

= Weighted Random (L2), Uniform (L3), GL CASS CPLEX CPLEX Optimal Portfolio L
M WS- .
g

Decay (L4) [Sandholm L o 3]
(R T
ot Ry

u Exponential (L6), Binomial (L7) [Fujishima] Optimal Algorithm Selection Portfolio Algorithm Selection 2

= CATS: Regions, Arbitrary, Matching, S i
Scheduling [Leyton-Brown et al.| [re—

Penditod log(Ruatia)

= Randomly sampled generator’s parameters for . -
each instance 3. Cap runtimes to significantly reduce the

= Took more than 3 years of CPU time just to amount of time required for collecting data

collect CPLEX runtimes

Discussion: Other Approaches
Algorithm selection has received some
previous study; e.g., [Rice|, [Lobjois & Lemaitre]
2. Distribution Induction Classification [Forvitz et al]
= To evaluate new algorithms, use portfolio hardness model as a PDF and generate = error measure often inappropriate
problems in proportion to the time our portfolio spends on them = class boundary effects
= D: original distribution of instances; H: model of portfolio runtime (h; normalized) Run n algorithms in parallel [Gomes & Selman|

= Generate instances from D x h, using rejection sampling = running time always n - min-time

80% ® in our case study, we did much better
(1.05 - min-time)

O Original Sequential algorithm selection using

B Harder MDP formalism [Lagoudakis & Littman)]

0%

60%

ing s 50% ; ;
Running ~ > %, Distribution 0 = algorithms must be reimplemented

Time s, % 500 instances 40% = computing a good value function at every
logu(sec) & — 30% recursive branch can be very expensive
’ (our value function averaged 27 secs)

Empirical Hardness Models 207
= In past work, we found that quadratic 10% ﬂ n T Future Directions

regression can yield very accurate models 0% : : ’_. : Apply these ideas to other A’P-hard problems

= predicting log;, of CPLEX runtime 0.1 10 100 1000 10000 100000 DYy Lhese 1deas Lo other VFTAALE Probiems
Runtime (s) such as SAT

Scheduling = our preliminary SAT portfolio (“SATzilla")

3 40% showed very encouraging results at the
80% fg:ﬁml 30% SAT-2003 competition (2! on random
60% Blfard data; 3'4 on “handmade” data)

= root mean squared error: 0.216 (test data) Matching

40% - c
least squares regression

Predicted log(Runtime)

20% 1 Study the use of SVM regression rather than
J la.s

10%
20% 1 J I I = our initial results show that SVMs
0% e I,{’ =, 0% A B oa =, outperform least-squares models, albeit by

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10 01 02 03 04 05 06 0.7 08 09 5 31 a fairly small “margin”
log(Actusl Runtime) Runtime (s) Runtime (s)

We would like to acknowledge Ryan Porter, Carla Gomes and Bart Selman for their assistance . This work was supported by DARPA grant F30602-00-2-0598 and a Stanford Graduate Fellowship.

	Boosting as a Metaphor For Algorithm DesignKevin Leyton-Brown Eugene Nudelman James McFadden Galen Andrew Yoav Shoham

